Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.062$
$w R$ factor $=0.132$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

3-(2-Pyridylamino)isobenzofuran-1(3H)-one

The crystal structure of the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{2}$, is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds which generate $C(4)$ chains. The phthalide system is planar and the dihedral angle between this plane and that of the pyridine ring is $73.55(13)^{\circ}$.

Comment

In a previous paper, we reported the synthesis and crystal structure of 3-(3-pyridylamino)isobenzofuran-1(3H)-one (Odabaşoğlu \& Büyükgüngör, 2006b). In the present paper, we report the structure of 3-(2-pyridylamino)isobenzofuran$1(3 H)$-one [or 3-(2-pyridylamino)phthalide], (I) (Fig. 1).

(I)

The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds (Table 2), forming $C(4)$ chains (Etter, 1990) running parallel to the a axis (Fig. 2). The phthalide system ($\mathrm{C} 1-\mathrm{C} 8 / \mathrm{O} 2$) of the molecule is essentially planar, the largest deviation from the mean plane being 0.020 (3) \AA for atom C8. The dihedral angle between the mean planes of the phthalide unit and the pyridine ring is $73.55(13)^{\circ}$.

Experimental

The title compound was prepared as described by Kubota \& Tatsuno (1971) and Odabaşoğlu \& Büyükgüngör (2006a) using phthalalde-

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Received 10 April 2006 Accepted 23 April 2006

3-Substituted phthalides. Part VI
hydic acid and 2-aminopyridine as starting materials (yield 95%; m.p. 479-480 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol (95%) solution at room temperature.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=226.23$
Orthorhombic, Pbca
$a=8.6366$ (5) £
$b=18.1462$ (12) \AA
$c=14.3885(11) \AA$
$V=2255.0(3) \AA^{3}$

Data collection

Stoe IPDS-2 diffractometer
ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.961, T_{\text {max }}=0.996$

$$
Z=8
$$

$D_{x}=1.333 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, colorless $0.78 \times 0.31 \times 0.04 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F>2 \sigma\left(F^{2}\right)=0.132\right.$
$w R\left(F^{2}\right)$
$S=1.04$
1991 reflections
158 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0522 P)^{2}\right. \\
& \quad+0.1489 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }= \\
& \hline 0.18 \mathrm{e}^{-3}
\end{aligned}
$$

23991 measured reflections 1991 independent reflections 1173 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.154$
$\theta_{\text {max }}=25.0^{\circ}$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{C} 1-\mathrm{O} 1$	$1.211(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.503(4)$
$\mathrm{C} 1-\mathrm{O} 2$	$1.363(4)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.419(4)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.370(4)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$120.9(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 2$	$111.3(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$130.3(4)$		

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.89(4)$	$2.12(4)$	$2.981(4)$	$161(3)$

Symmetry code: (i) $x-\frac{1}{2}, y,-z+\frac{1}{2}$.
There did not appear to be any problem with the crystal quality in terms of the physical appearance and diffraction spots. However, the compound crystallized as very thin plate-shaped crystals and so, although the exposure time was set to a high value (5 min), the value of $R_{\mathrm{int}}, 0.154$, is due to the weakness of the diffraction. All C-bound H atoms were refined using the riding-model approximation, with $\mathrm{C}-$

Figure 2
A partial packing diagram of (I), showing the hydrogen bonds as dashed lines.
$\mathrm{H}=0.93 \AA$ for aromatic and $\mathrm{C}-\mathrm{H}=0.98 \AA$ for methine H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The N -bound H atom was located in a Fourier difference map and was allowed to refine freely.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kubota, Y. \& Tatsuno, T. (1971). Chem. Pharm. Bull. 19, 1226-1233.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006a). Acta Cryst. E62, o1879-o1881. Odabaşoğlu, M. \& Büyükgüngör, O. (2006b). Acta Cryst. E62, o2088-o2089.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Univ. of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

